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Statistical mechanics of three-dimensional vesicles 

S.G. Whit t ington 

Department of Chemistry, University of Toronto, Toronto, Canada MSS 1A1 

We consider a lattice model of three-dimensional vesicles in which the boundary of the vesi- 
cle is a self-avoiding plaquette surface, homeomorphic to a sphere. Surfaces with fixed area 
can enclose a variety of different volumes and we associate a fugacity with the enclosed volume 
to mimic the effect of a pressure difference across the surface. Pairs of plaquettes which share 
a common edge can be in the same plane or normal to each other and we associate a fugacity 
with adjacent pairs of plaquettes at right angles to represent a surface stiffness term. We discuss 
the behaviour of the surfaces in the infinite surface area limit, as a function of these two fugaci- 
ties. 

1. I n t r o d u c t i o n  

Biological membranes  and microemulsions share many  interesting properties.  
Membranes  are typically thin flexible sheets ofamphiphi l ic  molecules such as phos- 
pholipids and can be model led as self-avoiding surfaces [1]. They can form closed 
structures which we refer to as vesicles, i.e. self-avoiding surfaces wi thout  bound-  
ary. Microemuls ions  are equilibrium systems consisting of  oil, water  and surfac- 
tant,  with the surfactant  preferentially adsorbed at the o i l /water  interface. These 
can also be modelled as self-avoiding surfaces and show a rich phase behaviour  

[21. 
In an a t tempt  to unders tand the behaviour  of  vesicles and, in particular,  their 

sizes and shapes, Fisher and coworkers  have carried out  a series of  studies of  self- 
avoiding polygons in two dimensions [3-6]. These papers are part icularly con- 
cerned with the way  in which the dimensions (such as the radius of  gyrat ion) 
depend on the length of  the perimeter and on the pressure difference across the 
bounda ry  of  the two-dimensional  vesicle. Fisher et al. [7] have derived some rigor- 
ous results abou t  the pressure dependence of  the "free energy" in a lattice model  
o f  vesicles, and analysed the behaviour  close to a tricritical point  using scaling argu- 
ments  and series analysis techniques. Mar i tan  et al. [8] have studied a similar 
model  by  mapping  it onto a gauge model.  This work  is mainly in two dimensions 
though some extensions to higher dimensions have appeared [7,9]. Fo r  an alterna- 
tive approach  to the shape changes in three dimensions see ref. [10]. 

In this paper  we concentrate  on a three-dimensional lattice model  in which the 
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boundary is a plaquette surface homeomorphic to a sphere. (Note, however, that 
there is experimental evidence for the existence of toroidal vesicles [11 ].) 

2. Some definitions and a s ta tement  of  results 

We shall be primarily concerned with the simple cubic lattice in three dimen- 
sions although many of our results also apply to the case of the d-dimensional 
hypercubic lattice. The vertices of the simple cubic lattice are the integer points in 
R 3, and the edges join pairs of vertices separated by unit distance. Aplaquette is the 
boundary and interior of a unit square with vertices in Z 3. We say that two pla- 
quettes are joined if they share a common edge, and connected if they are elements 
in a sequence of plaquettes such that neighbouring pairs in the sequence are joined. 
A surface is a collection of connected plaquettes and we shall be interested only in 
the case in which the surface is a manifold and in which every edge in the surface is 
incident on exactly two plaquettes. (This means that the surface has no boundary 
component and is closed.) Furthermore, we shall confine our attention to surfaces 
which are homeomorphic to a sphere and we shall call such embeddings in Z 3 vesi- 
cles. 

We consider two embeddings to be distinct if they cannot be superimposed by 
translation. Let vn be the number of vesicles with n plaquettes. Then [12] there exists 
a number K < oo such that 

vl/" <<.K (2.1) 

for all n. We write v,,(k, m) for the number of vesicles with n plaquettes, in which k 
pairs of joined plaquettes are at right angles and which enclose volume m. We 
define the generating function 

Z,,(o~, /3) = Z vn(k'm)e'~k+~m " (2.2) 
k,m 

In section 3 we prove that the limit 

A(a,/3) = lira n -1 log Z.(c~,/3) (2.3) 
n ---.~ oo 

exists for all a and/3..<0, and that A(a,/3) is a convex function of a and/3, again 
for/3 ~< 0. This implies continuity except possibly at/3 = 0, but left-continuity can 
be established there by a separate argument. From time to time we shall write X for 
A(0,0). 

I f / 3 > 0  we show that n -1 log Z,,(a,/3) diverges as n--*-eo, so that there is a 
jump discontinuity at/3 = 0+, for all (finite) values of c~. In fact we show that, for 
positive/3, the limit l i m . ~  n -3/2 log Z.  (e~,/3) exists and is finite, and that its value 
is independent of o~. This means that the vesicle is expanded (in the sense that the 
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square of its volume scales with the cube of its area), independent of the value of 
a. A transition occurs at/3 = 0 from a "ramified" phase to an expanded phase, and 
the location of this transition is not affected by the local rigidity of the vesicle. 

3. Convexi ty  and  cont inui ty  of  the free energy 

We first consider the case/31> 0. We can find a lower bound on Z~ (a,/3) by con- 
sidering a vesicle with maximum volume. If n = 6/2, where I is a positive integer, 
this is clearly a cube of side v/-n-~, enclosing volume m0 = (n/6) 3/2. The number of 
pairs of joined plaquettes which are at right angles is k0 = 12v/-n-/6. This implies 
that 

Zn ( o~, /3) ~ e ak°+~m° (3.1) 

and so 

lim inf n -3/2 log Z~(a,/3) >~/3/6 3/2 . 
n --~- o o  

(3.2) 

Clearly 

1 2 x / ~ < k ~ < 2 n  , (3.3) 

SO 

lim supn -3/2 log Zn(~,/3) ~< lim n -3/2 log "O n + / 3 / 6 3 / 2  . (3.4) 
n _.~ o o  n---~ o o  

Then (3.2) and (3.4) together with (2.1) imply that 

lim n -3/2 log Zn(a,/3) = / 3 / 6 3 / 2  (3.5) 
n - - ~  o o  

for all/3/> 0, independent of a. This means that, in the expanded regime, when the 
internal pressure is larger than the external pressure, there is no dependence on the 
rigidity term in the n ---* cx~ limit. 

When we consider/3 ~< 0 the situation is more complex. To prove the existence 
of the limit in (2.3) we need a concatenation argument. Each vesicle has a right- 
most face (x = XR), which is a plane containing plaquettes of the vesicle, such that 
no vertices of the vesicle have x-coordinate larger than XR. Similarly, each vesicle 
has a left-most face x = XL. Each plaquette in each of these two faces can be identi- 
fied by the y and z coordinates of its midpoint. Using lexicographic ordering we 
can define the top-most plaquette in the right face and the bottom-most plaquette 
in the left face. We call these plaquettes the top and bottom plaquettes respec- 
tively. 

For convenience, we first consider a subset of these vesicles, namely those in 
which there is a single plaquette in the left-most face and a single plaquette in the 
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right-most face. We call such vesicles special vesicles, and write sn for the number 
(up to translation) of special vesicles with n plaquettes. Consider special vesicles 
with n plaquettes, having k pairs of adjacent plaquettes at right angles and enclos- 
ing volume m. For brevity we call this a (k, m, n)-special vesicle. Let the number (up 
to translation) of (k,m,n)-special vesicles be sn(k,m). We can concatenate a 
(kl, ml, nl)-special vesicle and a (k2, m2, n2)-special vesicle by translating so that 
the top plaquette of one special vesicle is coincident with the bottom plaquette of 
the other special vesicle, and removing these two coincident plaquettes to form a 
new vesicle. The vesicle obtained in this way is clearly a special vesicle and has 
nl + n2 --  2 plaquettes, encloses volume m~ + m2 and has ks q- k2 - 8 pairs of pla- 
quettes at right angles. Since each pair of vesicles gives rise to a distinct vesicle by 
this concatenation we have the inequality 

~-~sn,(k,,ml)sn-n,+2(k-kl + 8,m-ml)<~sn(k,m). 
kl rnl 

(3.6) 

_ l / , /  .l/n ~<K<c~, and therefore Sn(o~,/3) 1In is bounded above, for Since sn <~ vn, ~n ~ "% 
finite a and/3 ~< 0, where 

Sn(ct,/3) --- ~ sn(k ,m)e  ~k+/~m . (3 .7)  

k,m 

This, together with (3.6), establishes the existence of the limit 

lim n -1 log Sn(a,/3) =- g(a,/3). (3.8) 
tl  ---~ o o  

We now relate Zn(a,/3) to S~(a,/3). Each (k, m, n)-vesicle can be converted into 
a special vesicle by attaching a unit cube to the top plaquette and a second unit cube 
to the bottom plaquette, and deleting the two pairs of coincident plaquettes. The 
surface area increases by 8 and the volume by 2. k increases to k + ko, where k0 can 
be any even integer from 8 to 16. Similarly, any special vesicle has two unit cubes 
which can be removed to reverse this transformation. Hence 

s , , ( k , m )  = 2 p ,  m - 2 )  
p = 4 , 8  

(3.9) 

from which it follows that the limit 

lim n -1 log Zn(a,/3) =- A(a,/3) (3.10) 
n - - ~  o o  

exists, and is equal to $(a,/3). 
We now turn to the question of convexity. Using Cauchy's inequality we obtain 
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2 

2 ' - ' (3.11) 

so that  n -1 log Z~(a,/3) is a convex function of  a and/3. Since the limit, when it 
exists, o f  a sequence of  convex functions is itself convex [13], it follows f rom (2.3) 
that  A(a,/3) is a convex function of  a and/3, for all a and for fl~<0. Since A(a, fl) is 
bounded above for a < e~ and for/3 ~< 0, convexity implies continuity for all finite 
c~ and for/3 < 0 [13]. Left-continuity at/3 = 0 can be proved by an extension of  an 
a rgument  given in ref. [7]. 

4. B o u n d s  on A(a, fl) 

We first establish upper bounds on Zn(a,/3) for/3~<0 and, from these, upper 
bounds on A(a,/3). We consider separately the cases a ~< 0 and a >~ 0. For  a ~< 0 we 
have 

Zn (a,/3) ~< v~ max e ~+~m = Vn eakmin+/3mrnin • (4.1) 
k,ra 

N o w  

kmin ( n ) ) 1 2 V / n - - / 6 ,  (4 .2)  

where the bound is realised when the plaquettes can form a cube. Similarly, 

mmin > / ( n  --  2) /4  so that  

A(a, ~) <~ lim n -1 log v~ + fl/4 = X + / 3 / 4 .  (4.3) 
H - - ~  OO 

For  a >/0 we have 

Z~(a,/3) <~ vn max e ~+~m = l)n eakma~+~mr"in , (4.4) 
k,m 

and kmax(n) ~< 2n, so that  

A(a,/3) ~<X + 24 + / 3 / 4 .  (4.5) 

I f  we set/3 = 0 (so that there is no pressure difference across the vesicle), then 
the behaviour  is determined by the local rigidity. This is a part icularly interesting 
regime in that  it corresponds, at least loosely, to the problem of  the rod-coi l  transi- 
tion in walks [14]. F r o m  (4.3) and (4.5) we see that  A(a,O)~x for a~<0 and 
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A(a, O) <~X + 2a for a~>O. We now look at lower bounds for A(a, 0). For a~<O we 
bound Z,,(a, O) by the terms in the series corresponding to kmin, giving 

Zn(a, O) = Z vn(k'm)e~k >~ Z vn(kmin'm)e°~*" (4.6) 
k,m m 

and using (4.2) we have A(a, 0)~>0. Similar arguments, together with monotoni- 
city, establish that, for a/> 0, A (a, 0) >/max[x, 2a]. Although we expect a transition 
associated with changing the rigidity, these techniques are not sufficiently sharp 
to establish the existence of such a transition. 

5. Adsorp t ion  of  vesicles 

In this section we take a brief look at the adsorption of vesicles at a plane surface 
[15]. We shall be interested in vesicles which have at least one plaquette in a pre- 
scribed plane surface and which are confined to lie in or on one side of this surface. 
An appropriate question to ask is what fraction of the plaquettes are in the sur- 
face, as a function of some variable which plays the role of temperature? Let v, (m) 
be the number of vesicles with n plaquettes confined to a half-space and having m 
plaquettes in the plane z = 0. Then the partition function is given by 

Q,(7) = Z Vn(m)e'm' (5.1) 
m~>l 

where 3' is an energy divided by kT. The corresponding reduced limiting free 
energy is given by 

A('y) = lim n -1 log Q,('y). (5.2) 
t l  - +  O O  

It can be shown by a concatenation argument that the limit in eq. (5.2) exists for 
7 < c~. Similarly it is easy to show that the free energy is convex and continuous. 

We note that, by adding a unit cube and translating the vesicles, we have the 
inequality 

V n - 4  = V n ( 1 )  , 

which leads, for 7 ~< 0, to the lower bound 

v,-4e 7 = v,(1)e 7 ~< Qn(7), 

which, together with monotonicity, gives 

Jt(~') = X 

for all "/~< 0. Since for .), > 0, 

e "m,.a~ <~ Qn(~/) <~Vn eTmmax , 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

w h e r e  mmax = n/2 + o(n), then 
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7/2 ~A(7)~<X + "y/2. (5.7) 

This establishes the existence of a phase transition since.A(-y) is a non-analytic func- 
tion of 7 for some non-negative q,. 

If we consider a membrane with free boundaries and homeomorphic to a disc 
and write dn (m) for the number of embeddings of a disc with n plaquettes confined 
to a half-space and having m plaquettes in z = 0, then a similar argument shows 
that 

lirnoo infn -1 log ~ d,(m)e'rm)~/. (5.8) 
m 

This implies that the adsorption thermodynamics must be different from that of a 
vesicle at sufficiently large ~/. 

6. Discussion 

This paper has been concerned with the response of a vesicle in three dimensions 
to a change in the pressure difference across the surface of the vesicle. Perhaps the 
most interesting prediction is that, in the large surface area limit, the vesicle 
changes from a crenated or ramified object to an expanded object, as soon as the 
pressure outside becomes less than the pressure inside. Moreover, this transition is 
independent of the local rigidity of the vesicle. 

Apart from their interest in statistical physics, these results may have some rele- 
vance to biological situations. For instance, there has been a continuing interest 
[16-18] in predicting the shape of the red blood cell. The primary biological pur- 
pose of the erythrocyte is to deliver oxygen and, to do this, it must traverse small 
capillaries and be able to deform without fragmentation. The membrane consists of 
a lipid bilayer and a membrane skeleton, consisting largely of protein, and asso- 
ciated with the lipid bilayer through protein-lipid interactions. The rigidity (or, 
equivalently, the deformability) of the membrane seems to be largely associated 
with the protein skeleton [18]. The typical biconcave shape of the cell is thought to 
be associated with the minimum bending energy [17]. In hypotonic solutions the 
cells swell and become much more spherical in shape [17]. On the other hand, in 
hypertonic solutions the cells are crenated [16]. Entropic effects seem to have been 
largely ignored in treatments of the erythrocyte shape and it may be worthwhile 
to incorporate these terms into future treatments. 
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